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A solution is presented for the spatial problem of stationary nonlinear creep of a 
medium when it is allowable to neglect the elastic strains. The medium is considered sto- 
chastically inhomogeneous so that the stress and strain tensors are random functions of the 
space coordinates. An analogous problem for a thin stochastically inhomogeneous plate was 
considered under conditions of the plane state of stress in [i, 2]. 

It is established that random variations in the mechanical properties of a material 
are capable of exerting substantial influence on an estimate of the operability of a struc- 
ture under creep conditions, and the linearization method used in this paper is justifiedly 
applicable to a sufficiently broad class of real materials. It is also shown that even when 
the deterministic part of the stress tensor corresponds to the plane stress state, the stress 
fluctuations in the direction of all three principal axes are quantities of the same order 

of magnitude. 

Let the stress tensor components oij satisfy the equilibrium equations 

o~ , j  = o (~,] = l ,  2, 3), ( 1 )  
.L 

and the strain rate tensor components zij the conditions 

Ai j~A lmne t tm , ]n  =- O, ( 2 )  

which are obtained from the compatibility equations for the strain by differentiation with re- 

spect to the time (Aij k is the unit asymmetric pseudotensor). 

Equations (I) and (2) are closed by the governing relationship which is taken in con- 

formity with nonlinear flow theory: 

"sij = A ( ~ I } -  ( I /3 )6 i jamm) .  ( 3 )  

Here A is a random function describing the stochastic properties of the material 

A = c s ~ [ i  -§ a r f ( x l ,  z.,, z3)], 
<U> = O, <U~> = t,  0 < o~ < 1, s~ = ( l /2 ) (3~j f r l j  - -  r ( 4 )  

Fluctuations in the mechanical properties are described by using the random function U(xl, x2, 
x3) while the number ~ plays the part of the variation factor for these properties. For real 
materials ~ can vary between 0.05 and 0.5. For instance, the variation factor ~ for ~I 395 
steel, computed from the results of tests borrowed from [3], turns out to be 0.18, while for 

EI 454 steel it is a = 0.39. 

The problem (1)-(4) is physically and statistically nonlinear, and its approximate 
solution is constructed in this paper on the basis of a linearization method. 

Let the stress tensor be represented in the form of the sum of a deterministic compo- 

0 ~ . and the fluctuations ~*j: nent 
13 

0 * 0 ' * ~  ~ = ~ q- ~ij, <~i~> = ~i~, <~j> = 0 

o 
The tensor oij is considered known and can be found as the solution of the appropriate deter- 

ministic problem 

"o 1 o ~9. �9 = O, A~jhAlmr~h,,,j,. = O, ~k,~,jr = cs ~ , , ~  jr" ( 5 )  tJ,J . ' 
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The fluctuations J*ij are high-frequency perturbations superimposed on the determinis- 
tic solution o~ where the gradients o~ are considerably less than o*ij,k in absolute 
value. Consequently, it can be considered that o~ ~ const when studying the fluctuations 
in a sufficiently small neighborhood of the selected point. For brevity, it is also assumed 
later that the tensor o~ is reduced to the principal axes. It follows from (1.5) that 

. . . .  O. (6) 'llO 

Linearization of the relationships (4) relative to the fluctuations ~*ij is executed 
taking into account the possibility of neglecting products of the form o*ijO*hT, 

where 

~,, = (,o~ + **),,/2 ,~ .,.o,' 4- ~ ,o,,-'~,.% 
2 

sOS __ 02 02 a 0 2  r~O r 0 0 0 9 
- -  ~ 1 1  4 -  0:')2 4 -  ~ a a  - -  ~ 1 1 ~ 2 2  - -  ~ - -  ~22C~a , 

* * ' * 3(I~[~ -- ~9. s* = (~ l lP l  -~ (121p2 -;- O~3pa, P6 = tz 

(7) 

(summation is not performed over the Greek subscripts). 

The creep strain rates have the following form according to (3) and 
the form ~Uo*ij are discarded) 

(7)  (products of 

The strain rate 

�9 ~ o . - ~  �9 " .  ] ~ = ~ ~ . ~O2p~ + ~o~ (~o~  _ %*) + ~ ~ p~ + ~o2~u~ ,  

tensor fluctuations 

(8) 

"* " "0 

can be calculated by using (5) and (8) 

., [ . ] 
eS~ = ~ cs "n -2  s ~ (3o'i3i3 - -  o'*ii!~+ ~2 s*p~ + s~ , ( 9 )  

airy = cs~ (~ ~ 7). 

If (9) is substituted into the compatibility equations for the strain 
�9 . A ~* �9 = O, then the following relationships can be obtained: ljk 7mn km,jn 

~,i~ (2 + ~p~) ~- ~ ( -  ~ + k~pl) + '~2,,~ ( -  i + k~p. 3 + ~u,~p~ = 3 ( ~ , . ~  + % , ~ 8 -  ~ 
�9 * * * * , ~'1,1~ ( -  i + k,pi) + ~.~,,8 (2 + k~p~) + o ~ . ~  ( -  1 + k.,p~) + ~u~a,  ~ = 3 (~,.~,12 + ~:,,.s - ~ 

�9 , * * (15 ~ *  $ (111,23 (2 "-~ klPl) + 022,23 (-- I -[- klP2) "JF q33,23 (--- I -~- klp'3) -}- o:U,23D 1 __.~ 3 ( 12,1, JF 18,12 --  028,11)' 

�9 ( 2 + k l p x ) +  * * ' * ~ e2~,~ (-- I 4- klp2) 4- (~8~,~'~ (-- I + klpa) -i- Crn, n (-- t + k2pl) 
(io) 

�9 (2 + k p j  4- * * + %2,n %n,n ( -  1 + k2p~) + r (u,~h + U,up j = 6%~,w 
�9 * * ~ * * (2 + ~p~) + ~ (V,~ h %,~  (2 + '~lPa) + %',,:~ ( -  l + tqP',) + %~,*~ ( -  l + "~,%) + %,1~ ( -  ~ + ~ h )  + * 

�9 O *  * 

�9 , ( nPi ) 
+ %~,~(2 + a,p,) + ~ (u.,~p.~ + u,~p~) = 6%,,~ ~ = 

(in deriving (I0) it is again assumed that o~ are slowly varying functions as compared with 

~*ij ) �9 

The linearized problem (6), (I0) is later solved in place of (1)-(4). 

Let the function U(x~, x=, x~),which is used to give the random perturbation field of 
the mechanical properties of the material, be homogeneous and isotropic. Then it is repre- 
sentable in the form of a Fourier--Stieltjes integral [4]: 

oo 

= e d~(~, ~, o~), (i!) 

rate fluctuations 
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where the condition of stochastic orthogonality 

is satisfied for the random differential d~(~, ~2, ~), where SU(m~, ~2, m3) is the spectral 
density of the field U(xl, x2, x3), and 6(x) is the Dirac delta function. 

Far from the body boundary, the solution of the problem (6), ~i0) will also be homoge- 
neous,and it can be sought in the form 

where  Bmn (~z ,  ~2, us)  a r e  unknown w e i g h t  f u n c t i o n s .  

The unknown functions ~mn are calculated from the system of linear equations that is �9 
obtained by substituting (Ii) and (12) into (6) and (I0): 

' ~:~+ ~ 2 ~  + ~ = O, 

~ , ~ [ ( - - t  + ~p~)~,~ + (--t  + ~p~)~  + (2 + ~p~)~]--3~a(~2~,a + %~a -- oa~)  = --%~2~pa, 

~ : % [ ( - t  + ~pO~n + (2 + ~p~)~ + (--1 + k~p~)~] '--3~(~,~2~ + ~a~,~ -- % ~ )  = - - ~ a P ~ ,  

~[(2 + ~p~)~ + (-I + ~:p~)~ + (--I + ~pa)~a~] --3~:(~0:2 + ~3 -- ~:~3)= --~P~" 

In the general case the weight functions have awkward form, consequently, they are not written 
down. 

Now, the various tensor of the random stress field can be determined by using (12): 

After going over the the spherical coordinates 

= ~ s i n ~ c o s O , ~ =  ~sin~sinO, ~a=  ~cos~  

and t a k i n g  i n t o  a c c o u n t  t h a t  [3] 

D U = 4n ~ S (~) J d ~  = t ,  
0 

the integral (13) reduces to the form 

O~jkz = ~ R~jh~ (cos ~) d (cos ~), 
0 

where RijkZ(COS ~) is a known rational function of c0s" ~,. 
tensor components can be found explicitly. 

As an illustration, the case is considered when o 

tions Bij have the form 

( , = , ,  2, 3), A 

= A 

Integrating 

= ~ 033- 

(14) 

~14), the variance 

Here the weight func- 

O, J = ~, z)~ 
(15,) 

2 2 2 
where 2 = ~i~i, A = [(I + n)(~ + ~ -- ~ ) 2  + (4 + n)~3(~i + ~2)]. 

The formulas (12) and (15) express the exact solution of the linearized problem (6) 
and (I0) for o ~ o oo 11 = 022 ~ 33" 

The variance tensor components can be Calculated by means of the above-mentioned scheme 

[see (13) and (14)]. Then for n # 0 
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TABLE 1 

I 

0 t,75 i 
t t , t31 
2 0,86 
3 o,7o I 
4 0,59 I 
5 O , a l  
6 oA5 1 
7 0,40 I 
8 0,36 [ 

0,! 

3,51 
2,26 
t ,72  
t ,40 

~t,18 
1,(}2 
0,90 
0,8t 
0,73 

i 

0,2 ! 0,3 

7,02 I t0,53 
4,52 1 6,78 
3,44 1 5,I6 
2,80 i 4,20 
2,36 ~ 3,54 
2,04 I 3,()6 
1,80 l 2,70 
i.62 , 2,43 
1,46 . 2,t9 

I 

0,$ 0,5 

14,04 .17,55 
9,04 tt,50 
6,88 8,60 
5,60 7,00 
4,72 5,90 
4,08 5,10 
3,60 4,50 
3,24 4,05 
2,92 3,65 

where 

~2s~ [15B ~ -- 7B @ i B (9 -- 3(IB) 27B -- 6 ] 
Dxnt=D"~z~ - i8n ~[ B(4B--I) -~ 2(--~--I~-K@2(4B.~L' , 

o~s~ 2 [lOB -- I 3,5L], 
Da3aa= 9n 2 ~ 2B --5BK 

~ o ~  [ 5 ~  _ 5B + ~ B (3 - lo~)  ~5~ - 6 ] 
D n ~ - -  18n ~ [ B(4B--I) -~ 2~B------~ K-~2-~=I) L , 

a~s ~ [ t0B -- 
D1813 = D~a2a 18n ~ -- [--  5 + ~ . K  -- 0,5L], 

~%o~ [5~ - t ~ ( to~ - 3) ,v ~], 
D~2 -- 18n~ [4B -- I -- ~ + 2 (4f'-- i) 

652302 
D113a = D2233 - -  9n ~ [-- 2,5 q- 2,SBK -- L], 

(16) 

- V2V + +V  
I 11+FYV +I+V  i I 

V2W+--  1- V a W + t + W  +2 V2W-  ( 
For n = 0 the variance tensor components are expressed by the formulas 

D n n  = D~222 = 0, t234~%~ Daaaa = 0 ,0730~  2, 
Dn22 = 0a0984~s ~ Dxam = D2a2a = 0 - 0 1 5 9 ~  ~ ( 1 7 )  

Dl~t~ = 0.0127~%~ t Dnaa = D2aaa = 0,0063~s% 

The remaining variance tensor components equal zero. 

Values of the quantity ~ / s  ~ (in percents) that characterizes the spread in the 
stress as a function of the variables ~ and n are presented in Table i, 

As is known, the power law describes creep well only on a small section of the stress 
variation. The hyperbolic sine law yields better results for the description of the creep 
rate dependence on the stress. If it is linearized, then for small stresses n = 0, and for 
large n takes'on values of the order of 6-8. Consequently, in the high stress domain, where 

the exponent n = 6-8 corresponds to the creep power law, the relative magnitude of the spread 
~ / s  ~ for real materials is between 0.36 (~ = 0.05) and 3.65% (~ = 0.5). As the stress 

decreases the values of the creep law exponent also diminish, hence the quantity ~-~-~/s ~ in- 
creases. In the law stress domain where complete physical linearization of the creep law is 
possible (n = 0), the spread in the stress takes on the greatest value: here ~ / s  ~ is be- 
tween 1.75 and 17.55%. 

Formulas (16) and (]7) permit estimation of the magnitude in the spread of the fluctu- 
ations o'a3 when ~3 = 0 in the deterministic problem. In this case the spread ~*~3 is char- 
acterized by the quantity D3~-~/o~ (for o = oo o o o ==, ~3 = 0 -- s = o~) whose value (in per- 
cent) are presented in Table 2 as a function of ~ and n. The quantity ~ / o ~ z  is approxi- 
mately just 1.5 times less than the corresponding values of D~/~q-~/~ and consequently, the 
fluctuations should not be neglected even for o~a = 0. 

An assumption about the smallness of the fluctuation tensor components o*ij was made 
in solving the creep problem for a stochastically inhomogeneous medium. This circumstance 
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TABLE 2 

0 
t 
2 
3 
4 
5 
6 
7 
8 

i,85 
0,80 
0,58 
0,45 
0,37 
0,32 
0,28 
0,24 
0,22 

O,i 

2,70 
1,6t 
t,i6 
0,91 
0,75 
0,64 
0,56 
0,49 
0,45 

o,~ 

5,40 
3,22 
2,32 
1,82 
t,50 
1,28 
1,18 
0,98 
0,90 

0,3 

8,t0 
4,83 
3,48 
2,73 
2,25 
1,92 
1,68 
1,47 
t,25 

0,~ 

10,80 
6,44 
4,64 
3,64 
3,00 
2,56 
2,24 
1,96 
1,80 

0,5 

13;50 
8,05 
5,80 
4,55 
3,75 
3,20 
2,80 
2,45 
2,25 

TABLE 3 

o,i 

l [ 0,57 
, 2 0,79 

3 0,99 
4 1,t8 
5 t,28 
6 1,39 
7 1,46 
8 i,52 

0,2 

1,34 
1,77 
2,29 
2,72 
3,10 
3,30 
3,62 
3,72 

0,3 

2,28 
2,83 
3,8i 
4,6t 
5,25 
5,77 
6,14 
6,60 

L o,~ 0,5 0;6 

3,39 [ 4,75 6,38 
4,07 ] 5,47 7,06 
5,63 7,74 10,t5 

6,91 J 9,60 i2,74 

7,95 1-'i7 ,09 I 14,84 8,79 I i2,40 1,6,60 
13,46 ,18,06 

iO,31 "i i4,35 19,30 

0,7 

8,33 
8,86 

12,90 
i6,32 
19,i4 
21,45 
23,38 
25,0i 

t~ 0,8 

10,68 
10,90 
16,05 
20,42 
24,02 
26,97 
29,45 
31,55 

0,9 

13,78 
t3,28 
i9,65 
25,i0 
29,58 
33,29 
36,36 

3 8 ;9 6  t 
permitted, firstly, neglecting products of the components of the this tensor, and secondly, 
linearization of the function s n. Consequently, a statistically and physically linear problem 
was obtained as a result of these operations. 

The errors occurring in the statistical and physical linearizations are interrelated~ 
and consequently obtaining an accurate estimate of the error is not possible as a set. In this 
connection, approximate error estimates were considered separately for each of the two mentioned 

O O 
types for the case o~I = o22 # o~a. It is here assumed that the random field U(Xl, x2, x3) is 
normal. 

The errors in physical linearization are the result of replacing the nonlinear function 
s n by a linear function by expanding it in a power series with subsequent retention of just 

the linear part of the series [see (7)]. It is here assumed that the principal part of the 
linearization error is the first term of the discarded series. A relative physical lineariza- 
tion error, f, a random function for which the mathematical expectation and variance were found 

approximately, was considered. 

Errors occur in the statistical linearization because of neglecting products of the 
form aUo..ij, ~-ijO"k~. These errors were estlmated for each component of the creep rate ten- 

~iJ" The mathematical expectation and variance of the relative linearization errors sor ~ij 
were calculated. Because of the awkardness the corresponding computations are not presented 

here. 
o 

As an estimate of the relative error in calculating the components of ~ij as a whole, 
the upper bound of the confidence interval was taken for the quantity f + ~ij. The fiduciary 
probability was selected equal to 0.95, while the corre!ation between errors of two kinds was 
not taken into account. Values of the estimates for the relative error in calculating the com- 

i 

ponent ~i~ as a function of ~ and n (in percents) are presented in Table 3. The error esti- 
mates-for the other components of sij do not exceed the estimates for ~I~. 

From Table 3 it is easy to see that there is a sufficiently broad range of parameters 

and n in which the error is completely acceptable for the solution of practical problems. 
The domain where the error does not exceed 10% is extracted in Table 3 as an example. 

I. 
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